17 Feb 2018

30 años sin Richard Feynman: sus mejores frases para la historia

Se cumplen tres décadas de la muerte de uno de ...

01 Feb 2018

Explorer 1, el satélite artificial con el que despegó la ciencia en el espacio

Hace algo más de 60 años desde que la exploració...

08 Nov 2017

El mensaje de la Voyager llega a oídos terrícolas

Si elegir los diez discos que llevarse a una ...

18 Jul 2018

De un Universo casi perfecto a lo mejor de dos mundos

Sucedió el 21 de marzo de 2013. La prensa c...

13 Jul 2018

Henrietta Leavitt, la astrónoma ‘calculadora’ que nos ayudó a entender el universo

Henrietta Leavitt, la astrónoma 'calculadora' d...

20 Apr 2018

«Sujeté con mis manos la escotilla de la estación espacial Mir para no morir»

El cosmonauta ruso sobrevivió a uno de los accid...

07 Mar 2018

La relación de amor-odio de Einstein con la fama

Aún en cama, el profesor alarga el brazo y t...

28 Feb 2018

Rutherford, el “profesor” de Premios Nobel

Ernest Rutherford, el físico que hizo avances c...

17 Feb 2018

¿Cómo reaccionaríamos ante el descubrimiento de vida extraterrestre?

¿Cómo reaccionaríamos ante el posible hallazgo ...

17 Feb 2018

30 años sin Richard Feynman: sus mejores frases para la historia

Se cumplen tres décadas de la muerte de uno de ...

01 Feb 2018

Explorer 1, el satélite artificial con el que despegó la ciencia en el espacio

Hace algo más de 60 años desde que la exploració...

08 Nov 2017

El mensaje de la Voyager llega a oídos terrícolas

Si elegir los diez discos que llevarse a una ...

18 Jul 2018

De un Universo casi perfecto a lo mejor de dos mundos

Sucedió el 21 de marzo de 2013. La prensa c...

13 Jul 2018

Henrietta Leavitt, la astrónoma ‘calculadora’ que nos ayudó a entender el universo

Henrietta Leavitt, la astrónoma 'calculadora' d...

20 Apr 2018

«Sujeté con mis manos la escotilla de la estación espacial Mir para no morir»

El cosmonauta ruso sobrevivió a uno de los accid...

Cat-1

Cat-2

Cat-2

Cat-1

Cat-1

Cat-2

Cat-2

Asteroides

Cometas

» » » » El Hubble detecta la primera estratosfera de un exoplaneta

Un equipo internacional de investigadores, en el que ha participado el Centro de Astrobiología, ha encontrado pruebas inequívocas de la existencia de una estratosfera en el exoplaneta WASP 121b, un gigante gaseoso situado a unos 900 años luz de la Tierra. Su atmósfera llega a alcanzar los 2.230 ºC, una temperatura capaz de fundir el hierro.


Imagen artística del planeta WASP 121b. La forma “abombada” del planeta es debida a las intensas fuerzas de marea que ejerce la estrella. / Engine House VFX, At-Bristol Science Centre, University of Exeter

Un equipo internacional de investigadores, liderado por la Universidad de Exeter y en el que participa el Centro de Astrobiología (CAB), ha observado con el telescopio espacial Hubble de la NASA la intensa emisión del vapor de agua de la atmósfera del exoplaneta WASP-121b.

Las moléculas de agua que hay en la atmósfera de WASP-121b emiten radiación en forma de luz infrarroja

Localizado a unos 900 años-luz de la Tierra, este exoplaneta gigante gaseoso también es comúnmente conocido como 'Júpiter caliente', aunque su masa y radio son mayores que las del planeta del Sistema Solar.

WASP-121b orbita su estrella anfitriona cada 1,3 días, y está situado, aproximadamente, a la distancia mínima posible antes de que la gravedad de la estrella comience a “romperlo”. Al estar tan cerca de la estrella, las capas superiores de la atmósfera llegan a alcanzar los 2.230ºC, una temperatura a la que el hierro pasaría a estado gaseoso.

Con el fin de estudiar la atmósfera de este gigante gaseoso, los científicos utilizaron la espectroscopia para analizar el brillo del planeta en diferentes longitudes de onda de la luz. En particular, el vapor de agua en la atmósfera del planeta se comporta de manera predecible dependiendo de la temperatura. A temperaturas más bajas, el vapor de agua bloquea el paso de la luz, absorbiéndola. Pero a temperaturas más altas, las moléculas de agua emiten luz en lugar de absorberla.

Así, se ha observado que las moléculas de agua que hay en la atmósfera de WASP-121b emiten radiación en forma de luz infrarroja, que el ojo humano es incapaz de detectar. La observación de la emisión procedente del vapor de agua es la prueba inequívoca de la presencia de una estratosfera. Eso indica que el vapor de agua está más caliente que lo que hay en capas inferiores.





Comparación entre la estratosfera del exoplaneta WASP-121b (en rojo) y la atmósfera de una estrella enana marrón (en violeta). / NASA, ESA, and G. Bacon (STSci)

La estratosfera se define como la capa que está entre la troposfera (más cerca de la superficie) y la mesosfera (más cerca del espacio), y tiene la peculiaridad de que la temperatura aumenta con la altitud (lo normal sería que disminuyese). En la estratosfera terrestre, el ozono absorbe la radiación ultravioleta procedente del Sol, siendo el responsable del aumento de temperatura de esta capa. En otros cuerpos del Sistema Solar, como Júpiter o la luna de Saturno Titán, el metano es el responsable del calentamiento de sus estratosferas.

En los planetas del Sistema Solar, la variación típica de temperatura dentro de la estratosfera es de menos de 100 grados. Sin embargo, en WASP-121b, la temperatura en la estratosfera se eleva más de 1000 grados.

Un misterioso aumento de la temperatura

Para desentrañar este misterioso aumento de temperatura serán necesarias nuevas observaciones en otras longitudes de onda, como ultravioleta y rayos X. Precisamente Jorge Sanz-Forcada, investigador del CAB y uno de los coautores del trabajo, se encarga de las observaciones de rayos X, con objeto de entender cómo influye la radiación de altas energías en la atmósfera de estos planetas.

Los posibles candidatos que se barajan para explicar este extraordinario calentamiento son el óxido de vanadio y el óxido de titanio, pues en forma gaseosa absorben fuertemente la luz de las estrellas en las longitudes de onda visibles, de manera similar a como el ozono terrestre absorbe la radiación ultravioleta solar. Se espera que estos compuestos estén presentes en los Júpiter súper-calientes, tales como WASP-121b, cuyas atmósferas pueden alcanzar las altas temperaturas que se requieren para mantenerlos en estado gaseoso. De hecho, el óxido de vanadio y el óxido de titanio se observan normalmente en las estrellas enanas marrones, esas "estrellas fallidas" que presentan similitudes con los exoplanetas.

El estudio de este exoplaneta representa un punto de referencia para el estudio de atmósferas planetarias, y constituye el objetivo del próximo telescopio espacial James Webb de la NASA, que será capaz de estudiar las atmósferas de exoplanetas como WASP-121b con una sensibilidad sin precedentes.


CAB

«
Next
NASA comparte nuevas fotos de Júpiter tomadas por la sonda Juno
»
Previous
Mapean en 3D el núcleo de una supernova

About the Author DTR

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.

No hay comentarios

Leave a Reply

Sol

Cat-5

Cat-5

Po qué...

Anecdotas de Newton

Einstein