Cat-1

Cat-2

Cat-2

Cat-1

Cat-1

Cat-2

Cat-2

Asteroides

Cometas

Latest Posts

Nueva técnica para encontrar planetas más jóvenes en nuestra galaxia



Dos equipos independientes de astrónomos han utilizado ALMA para obtener pruebas convincentes de que hay tres jóvenes planetas orbitando alrededor de la estrella HD 163296. Usando una nueva técnica de búsqueda de planetas, los astrónomos identificaron tres perturbaciones en el disco de gas que hay alrededor de la joven estrella: se trata de la evidencia más fuerte hallada hasta el momento de que está siendo orbitada por tres planetas recién formados. Son considerados los primeros planetas descubiertos con ALMA.

El conjunto ALMA (Atacama Large Millimeter/submillimeter Array) ha transformado nuestra comprensión de los discos protoplanetarios, las fábricas de planetas cargadas de polvo y gas que rodean a estrellas jóvenes. Los anillos y los huecos de estos discos proporcionan interesantes indicios de la presencia de protoplanetas[1]. Sin embargo, otros fenómenos también podrían explicar estas características.


Esta imagen de amplio campo muestra los alrededores de la joven estrella HD 163296 en la rica constelación de Sagitario (el arquero). Esta fotografía fue creada a partir de imágenes que forman parte del sondeo Digitized Sky Survey 2. HD 163296 es la estrella azulada brillante del centro.

Crédito:
ESO/Digitized Sky Survey 2
Acknowledgement: Davide De Martin

Pero ahora, usando una nueva técnica de búsqueda de planetas que identifica patrones inusuales en el flujo de gas dentro de un disco de formación de planetas alrededor de una estrella joven, dos equipos de astrónomos han confirmado, de manera independiente, la existencia de diferentes características distintivas que señalan la presencia de planetas recién formados orbitando a una estrella muy joven [2].

“Medir el flujo de gas dentro de un disco protoplanetario nos proporciona mucha más seguridad sobre la presencia de planetas alrededor de una estrella joven”, afirma Christophe Pinte, de la Universidad de Monash (Australia) y autor principal de uno de los dos artículos. “Esta técnica ofrece una prometedora nueva vía para comprender cómo se forman los sistemas planetarios”.

Para hacer sus respectivos descubrimientos, cada equipo analizó observaciones de ALMA de HD 163296, una joven estrella situada a unos 330 años luz de la Tierra, en la constelación de Sagitario (el arquero) [3].

Esta estrella tiene casi dos veces la masa del Sol, pero solo 4 millones de años de edad (una milésima parte de la edad del Sol).

“Analizamos el movimiento localizado a pequeña escala del gas en los discos protoplanetarios de la estrella. Este nuevo enfoque podría descubrir algunos de los planetas más pequeños de nuestra galaxia, todo gracias a las imágenes de alta resolución de ALMA”, dijo Richard Teague, astrónomo de la Universidad de Michigan y autor principal del segundo artículo.

En lugar de centrarse en el polvo del interior del disco, del cual se obtuvieron ya imágenes muy definidas gracias a observaciones anteriores de ALMA, los astrónomos estudiaron el gas de monóxido de carbono (CO) repartido por el disco. Las moléculas de CO emiten una luz muy peculiar en la longitud de onda milimétrica, un rango que ALMA puede observar con gran detalle. Sutiles cambios en la longitud de onda de esta luz debido al efecto Doppler revelaron los movimientos del gas en el disco.

El equipo dirigido por Teague identificó dos planetas situados aproximadamente a 12.000 millones y 21.000 millones de kilómetros de la estrella. El otro equipo, liderado por Pinte, identificó un planeta a aproximadamente 39.000 millones de kilómetros de la estrella [4].

Los dos equipos utilizaron variantes de la misma técnica, que busca anomalías en el flujo del gas (según revelan los cambios en las longitudes de onda de la emisión de CO), lo cual indica que el gas está interactuando con un objeto masivo [5].

La técnica utilizada por Teague, que derivó variaciones promedio en el flujo de gas muy pequeñas (un pequeño porcentaje), reveló el impacto de varios planetas en los movimientos de gas cerca de la estrella. La técnica utilizada por Pinte, que mide el flujo del gas de forma más directa, se adapta mejor al estudio de la parte externa del disco. Permitió a los autores localizar con mayor precisión el tercer planeta, pero se limita a grandes desviaciones del flujo, mayores que un 10%.

En ambos casos, los investigadores identificaron las áreas donde el flujo del gas no coincide con su entorno, algo parecido a los remolinos que se forman alrededor de una roca en un río. Analizando cuidadosamente ese movimiento, podían ver claramente la influencia de cuerpos planetarios con masas similares a la de Júpiter.

Esta nueva técnica permite a los astrónomos hacer una estimación más precisa de las masas protoplanetarias y es menos probable obtener falsos positivos. “Estamos poniendo a ALMA en la vanguardia del campo de la detección de planetas”, afirma el coautor Ted Bergin, de la Universidad de Michigan.

Ambos equipos seguirán refinando este método y lo aplicarán en otros discos, donde esperan entender mejor cómo se forman las atmósferas y qué elementos y moléculas participan en el proceso de nacimiento de un planeta. 



ALMA ha proporcionado evidencias convincentes de que hay tres jóvenes planetas orbitando alrededor de la estrella HD 163296. Usando una nueva técnica de búsqueda de planetas, los astrónomos identificaron tres perturbaciones en el disco de gas que hay alrededor de la joven estrella: se trata de  la evidencia más fuerte hallada hasta el momento de que está siendo orbitada por tres planetas recién formados. Son considerados los primeros planetas descubiertos con ALMA.



Notas

[1] Aunque se han descubierto miles de exoplanetas en las últimas dos décadas, la detección de protoplanetas se mantiene a la vanguardia de la ciencia y no ha habido detecciones claras hasta ahora. Las técnicas utilizadas actualmente para encontrar exoplanetas en sistemas planetarios completamente formados (como medir el bamboleo de una estrella o la atenuación de la luz de las estrellas debido a un planeta en tránsito) no se prestan a la detección de protoplanetas.

[2] El movimiento del gas alrededor de una estrella en ausencia de planetas tiene un patrón muy simple y predecible (rotación Kepleriana) que es casi imposible de alterar tanto local como coherentemente, por lo que sólo la presencia de un objeto relativamente masivo puede crear tales perturbaciones.

[3] Las impresionantes imágenes de ALMA de HD 163296 y de otros sistemas similares han revelado interesantes patrones de anillos concéntricos y de huecos dentro de los discos protoplanetarios. Estos huecos pueden ser evidencia de que los protoplanetas están socavando y expulsando el polvo y el gas de sus órbitas, e incorporándolo parcialmente a sus propias atmósferas. Un estudio previo del disco de esta estrella en particular muestra que los huecos en el polvo y el gas se superponen, lo que sugiere que en esa zona se han formado al menos dos planetas.

Sin embargo, estas observaciones iniciales sólo proporcionaron indicios y no han podido utilizarse para estimar con precisión las masas de los planetas.

[4] Esto equivale a 80, 140 y 260 veces la distancia entre la Tierra y el Sol.

[5] Esta técnica es similar a la que condujo al descubrimiento del planeta Neptuno en el siglo XIX. En ese caso, se detectaron anomalías en el movimiento del planeta Urano debidas al efecto gravitatorio de un cuerpo desconocido, que posteriormente, en 1846, fue descubierto visualmente y resultó ser el octavo planeta del Sistema Solar.

La técnica utilizada por el equipo de Pinte para determinar la presencia del planeta se basa en un estudio titulado Planet formation signposts: observability of circumplanetary disks via gas kinematics (Señales de formación de planetas: posibilidades de observación de discos circumplanetarios a través de la cinemática del gas) por Pérez et al., publicado en la revista Astrophysical Journal Letters en 2015.


ESO


El observatorio XMM-Newton de la ESA ha descubierto el candidato más prometedor a un tipo de fenómeno cósmico muy poco común y esquivo: un agujero negro de masa intermedia en trance de desgarrar y devorar una estrella cercana.

El Universo alberga distintos tipos de agujeros negros: las estrellas masivas generan agujeros negros de masa estelar cuando mueren, mientras que las galaxias tienen en su centro agujeros negros supermasivos, con masas equivalentes a millones e incluso miles de millones de soles.

Entre ambos extremos encontramos un miembro discreto de la familia de los agujeros negros: los agujeros negros de masa intermedia, considerados el germen de futuros agujeros negros supermasivos. Resultan especialmente esquivos, por lo que solo se han llegado a detectar muy pocos candidatos firmes.

Ahora, un equipo de investigadores ha encontrado un signo de actividad claro gracias a datos del observatorio espacial de rayos X XMM-Newton de la ESA, así como del observatorio de rayos X Chandra y el telescopio de rayos X Swift de la NASA. Estos detectaron una enorme emisión de radiación en los márgenes de una galaxia distante, generada cuando una estrella pasó demasiado cerca de un agujero negro y este la devoró.

“Es realmente emocionante: hasta ahora no se había visto un agujero negro de este tipo”, afirma el investigador principal, Dacheng Lin, de la Universidad de New Hampshire (Estados Unidos).

“Aunque se han llegado a descubrir algunos, en general se trata de un fenómeno muy poco común y muy buscado. Este es el mejor candidato a agujero negro de masa intermedia observado hasta la fecha”.

Se cree que este tipo de agujero se puede formar por varias vías. Un escenario de formación sería la rápida fusión de estrellas masivas situadas en cúmulos estelares densos, por lo que los centros de dichos cúmulos serían los lugares más adecuados para buscarlas. No obstante, para cuando estos agujeros negros se han formado, apenas queda gas, por lo que los agujeros negros no tienen materia que consumir y, por lo tanto, la radiación que emiten es muy tenue, lo que a su vez hace que sean muy difíciles de detectar.


XMM-Newton view

“Uno de los pocos métodos que podemos utilizar para localizar un agujero negro de masa intermedia es esperar a que una estrella pase cerca y sufra una perturbación; de esta forma, se vuelve a ‘despertar el apetito’ del agujero negro y emite una fulguración como la que hemos observado”, añade Lin.

“Hasta ahora, este tipo de evento solo se ha visto claramente en el centro de una galaxia, no en sus márgenes”.

Lin y sus colegas cribaron datos de XMM-Newton para encontrar el candidato. Lo identificaron en observaciones de una gran galaxia a unos 740 millones de años luz, realizadas entre 2006 y 2009 como parte de un estudio de galaxias, y en datos adicionales de Chandra (2006 y 2016) y Swift (2014).

“También miramos imágenes de la galaxia tomadas por otros telescopios para ver cuál era el aspecto óptico de la emisión”, explica Jay Strader, de la Universidad Estatal de Michigan (Estados Unidos) y coautor del estudio.

“Detectamos el brillo provocado por el destello de la fuente en dos imágenes de 2005: era mucho más azul y brillante de lo que se veía tan solo unos años antes. Al comparar todos los datos, determinamos que la pobre estrella debió de sufrir una perturbación en octubre de 2003 en nuestro tiempo, y emitió una explosión de energía que fue decayendo a lo largo de la siguiente década”.

Los científicos creen que la estrella fue desgarrada por un agujero negro con una masa cincuenta mil veces mayor que la de nuestro Sol.

Estas emisiones procedentes de estrellas no suelen provenir de este tipo de agujeros negros, por lo que este descubrimiento sugiere que podría haber más en estado inactivo, escondidas en la periferia de las galaxias por todo el Universo local.

“Este candidato se descubrió gracias a un estudio exhaustivo del catálogo de fuentes de rayos X de XMM-Newton que, repleto de datos de alta calidad que abarcan grandes áreas del firmamento, resultó esencial para determinar el tamaño del agujero negro e identificar qué provocó la emisión de radiación”, apunta Norbert Schartel, científico de la ESA para el proyecto XMM-Newton.

“El catálogo de fuentes de rayos X de XMM-Newton, con más de medio millón de fuentes, es hoy en día el mayor de su clase: objetos exóticos como el identificado en nuestro estudio permanecen ocultos y a la espera de su descubrimiento mediante una exhaustiva minería de datos”, añade la coautora Natalie Webb, directora del Centro Científico para el Estudio de XMM-Newton en el Instituto de Investigación de Astrofísica y Planetología (IRAP) de Toulouse (Francia).

“Saber más sobre estos objetos y sus fenómenos asociados es clave para que entendamos los agujeros negros. En la actualidad, nuestros modelos podrían parecerse a un escenario en el que una civilización alienígena observa la Tierra y ve a los abuelos que llevan a sus nietos a la guardería: asumirían que falta algo en su modelo de la vida humana, pero sin observar ese eslabón intermedio no podrían estar seguros de ello. Este hallazgo es sumamente importante y muestra que el método utilizado para el descubrimiento es correcto”, concluye Norbert.



esa

Esa puede ser la misteriosa fuente de un tipo muy peculiar de luz muy tenue que emana de varias regiones de la Vía Láctea



Durante décadas, los astrónomos han tratado de averiguar sin éxito cuál es la fuente exacta de un tipo muy peculiar de luz muy tenue, en el rango de las microondas, que emana de varias regiones de la Vía Láctea. Conocida como emisión anómala de microondas (AME), se sabe que esta fantasmagórica radiación tiene su origen en la energía liberada por diminutas nanopartículas que giran muy rápidamente.

Pero nadie hasta ahora había conseguido averiguar la naturaleza de esas partículas.

En palabras de Jane Greaves, astrónoma de la Universidad de Cardiff y autora principal de un artículo recién publicado en Nature Astronomy, "aunque sabemos que algún tipo de partícula es responsable de esta luz de microondas, su fuente precisa ha sido un rompecabezas desde que se detectó por primera vez hace casi 20 años".

Hasta ahora, se creía que el culpable más probable de esta emisión de microondas era una clase de moléculas orgánicas conocidas como hidrocarburos aromáticos policíclicos (HAP): moléculas a base de carbono que se encuentran en el espacio interestelar y que se reconocen por la distintiva luz infrarroja que emiten.

Pero el estudio capitaneado por Jane Greaves ha demostrado que las misteriosas microondas proceden, con toda probabilidad, de pequeños cristales de carbono, también conocidos como nanodiamantes, que brillan en el interior de los discos de polvo y gas que rodean a las estrellas recién formadas.

Esas colecciones de polvo, gas y moléculas orgánicas, materiales "sobrantes" de la formación estelar, reciben el nombre de discos protoplanetarios y son precisamente los lugares en que los planetas empiezan a formarse. La elevada temperatura y las altas energías reinantes en el interior de estos discos favorecen, además, la formación de nanodiamantes. Tanto es así que los nanodiamantes de los discos protoplanetarios (miles de veces más pequeños que un grano de arena), se han encontrado ya a menudo en meteoritos en la Tierra.

"En una labor parecida a la de Sherlock Holmes para eliminar todas las demás posibles causas -explica Greaves- podemos decir con total confianza que el mejor y único candidato capaz de producir este brillo de microondas es la presencia de nanodiamantes alrededor de estas estrellas recién formadas ".

El nacimiento del Sistema Solar

Para llegar a sus resultados, el equipo se concentró en tres jóvenes estrellas que emiten luz AME utilizando los telescopios Robert C. Byrd Green Bank en West Virginia y el Australia Telescope Compact Array. Al estudiar la luz infrarroja procedente de los discos protoplanetarios que rodean esas estrellas, el equipo pudo relacionarla con la firma única de los nanodiamantes.

Los investigadores averiguaron de que la señal procedía de nanodiamantes hidrogenados, en los que la estructura cristalina de carbono está rodeada por moléculas portadoras de hidrógeno en su superficie.

"Se trata de una resolución genial e inesperada del enigma de la radiación anómala de microondas -continúa Greaves-. Y es aún más interesante si pensamos que se obtuvo al observar discos protoplanetarios, lo que arroja luz sobre las características químicas sobre el nacimiento de sistemas solares, incluido el nuestro".



ABC
 

Esta turbulenta paleta cósmica de violetas y amarillos muestra una burbuja de gas denominada NGC 3199, producida por la estrella conocida como WR18 (Wolf-Rayet 18).

 (Foto: ESA/XMM-Newton; J. Toalá; D.Goldman)

Las estrellas de Wolf-Rayet son estrellas masivas, potentes y energéticas que están a punto de alcanzar el final de su vida. Expulsan a sus alrededores vientos densos, intensos y rápidos que empujan y barren el material existente, esculpiendo a su paso extrañas y fascinantes figuras. Estos vientos también pueden crear fuertes ondas de choque al colisionar con el medio interestelar, comparativamente más frío, calentando toda la materia cercana. Mediante este proceso, el material puede alcanzar temperaturas tan altas como para emitir rayos X, un tipo de radiación que solo emiten los fenómenos de alta energía en el Universo.

Esto es lo que sucedió en el caso de NGC 3199. Aunque ya se ha visto en otras ocasiones este tipo de situación, sigue siendo poco común: solo se han detectado otras tres burbujas de Wolf-Rayet que emitieran rayos X (NGC 2359, NGC 6888 y S308). Se cree que WR18 es una estrella con vientos especialmente potentes; una vez que se acabe el material con que alimentar estos vientos, explotará violentamente en forma de supernova, finalizando su vida con una última y sobrecogedora explosión.

Esta imagen fue capturada por el instrumento EPIC (Cámara Europea de Imágenes de Fotones) del observatorio espacial de rayos X XMM-Newton de la ESA, y en ella se han marcado con colores los distintos gases. El gas más caliente y difuso, que emite rayos X en el interior de la burbuja de Wolf-Rayet, se muestra en color azul, mientras que un arco brillante y visible en la parte óptica del espectro se ha coloreado en amarillo verdoso (emisión de oxígeno) y rojo (emisión de azufre).

El componente azul y amarillo verdoso forma una nebulosa óptica (una nube brillante de polvo y gases ionizados), que se extiende hacia el extremo occidental de la burbuja de rayos X (en esta imagen, el norte se encuentra en la esquina superior izquierda. Este arco inclinado hizo que los astrónomos identificaran anteriormente a WR18 como una estrella fugitiva que se desplazaba mucho más rápido de lo esperado en comparación con sus alrededores; sin embargo, estudios más recientes han mostrado que la emisión de rayos X observada no sostiene esta idea. Antes bien, se cree que la forma de NGC 3199 se debe a variaciones en la composición química que rodea la burbuja y a la configuración inicial del medio interestelar que rodea a WR18.




  esa


La tormenta de polvo en el planeta rojo es tan intensa que podría entorpecer las comunicaciones del robot con la Tierra de forma permanente.



Tras haber arribado en 2004 a Marte, el robot Opportunity de la NASA enfrenta una de las peores adversidades que tenido hasta ahora: una tormenta de polvo que amenaza sus comunicaciones con la Tierra de forma permanente. La tormenta de polvo que se empezó a formar desde el 3 de junio es ya tan intensa que parece casi de noche, de acuerdo con una fuente de la NASA familiarizada con el asunto, según recoge The Verge.

Lo anterior ha impedido que la luz del Sol alcance los paneles solares del Opportunity, los cuales generan la energía con la que carga su batería interna. Por tal razón, el robot está usando sus reservas de batería y existe la posibilidad de que el voltaje sea demasiado bajo y no pueda comunicarse con los ingenieros en la Tierra durante el resto de la tormenta.

La amenaza de un fatal enfriamiento

A falta de luz solar, una de las cuestiones que también le preocupa a los científicos e ingenieros de la NASA es si el Opportunity se está enfriando demasiado durante la tormenta de polvo. Opportunity puede calentar su batería moviéndose un poco cada día pero si la reserva de energía de su batería es muy baja, corre peligro no conseguirlo

Con tan solo moverse un poco cada día puede calentar su batería lo suficiente como para funcionar en el gélido ambiente de Marte, pero si las reservas son demasiado bajas, corre el peligro de no poder realizar movimiento alguno por el resto de la tormenta. Si bien cuenta con calentadores que pueden proporcionar la calidez necesaria en caso de que la temperatura de la batería baje demasiado, también necesitan energía para funcionar.

A medida que el Opportunity haga mayor uso del almacenamiento de la batería, entrará en el llamado "modo de baja potencia", en el que funciona con un piloto automático que permanece apagado la mayor parte del día y solo despierta durante ciertas ventanas de tiempo predefinidas para escuchar los comandos de la Tierra. 

Comunicaciones en peligro 

Existe la posibilidad de que la potencia fuera tan baja que se saltara el "modo de falla de baja potencia" y entrara en un apagón gradual

Según la fuente de la NASA contactada por el medio estadounidense, los ingenieros creen que, por ahora, el robot todavía no llega al "modo de falla de baja potencia". Sin embargo, cabe la posibilidad de que la potencia haya disminuido a tal grado que se saltara por completo el modo de falla y haya entrado directamente en un apagón gradual.

De ser esa la situación, hay dos posibilidades. La primera, que no se comunique por un tiempo y, la segunda, que solo se comunique esporádicamente cuando reúna suficiente energía durante períodos de tiempo más largos.

En el peor de los casos, si pierde la comunicación con la Tierra, los ingenieros de la NASA no tendrán forma de averiguar en qué tipo de condición se encuentra el Opportunity. Si hace demasiado frío, puede estar en peligro de romperse. En 2010, las bajas temperaturas causaron que el gemelo de Opportunity, el Spirit Rover, dejara de funcionar en Marte.

Cabe destacar que el autómata lleva 14 años cuando su misión original era de tan solo tres meses y ya en 2007 sobrevivió una tormenta de polvo en el planeta rojo. Sin embargo, aquella ocasión no fue tan fuerte como la de ahora.

La actual tormenta podría ir creciendo de tamaño y eventualmente abarcar casi todo el globo marciano. De ser así, podría durar hasta un mes o más, como aquella tormenta de 2007.

Por el lado positivo, el Opportunity se encuentra cerca del ecuador en Marte, donde el verano está por comenzar. Además, estas tormentas también pueden actuar como una gran manta atmosférica y absorber el calor del Sol, lo que calentaría al planeta rojo.

Ante este panorama, la NASA ha pedido ayuda a Deep Space Network, un sistema global de antenas de comunicación, para escuchar mejor las transmisiones del robot. No obstante, los científicos no tienen de momento más opción que esperar a que la tormenta pase para comprobar el estado en el que finalmente se encontrará el androide



hipertextual

Desde hace décadas se observan relámpagos en la atmósfera de Júpiter, sobre todo cerca de los polos, pero las ondas de radio que emitían parecían diferentes a las de estos destellos luminosos en la Tierra. Ahora, gracias a los radiómetros más potentes de la sonda Juno, se ha comprobado que las frecuencias tampoco son tan diferentes y que los relámpagos de los dos planetas son similares. Además los científicos han podido convertir algunas de sus señales de radio en sonidos audibles.




Desde que la nave espacial Voyager 1 de la NASA sobrevoló Júpiter en marzo de 1979, los astrónomos se han preguntado sobre el origen de los relámpagos de Júpiter. Aquel encuentro confirmó la existencia de estos destellos luminosos en el gigante gaseoso, pero las señales de radio asociadas no coincidían con los que producen los rayos y relámpagos en la Tierra.

Pero gracias a los datos recogidos por la sonda Juno, que orbita alrededor de Júpiter desde el 4 de julio de 2016, se ha comprobado que en realidad los relámpagos jovianos y terrestres son muy similares, aunque aparecen en regiones diferentes. El estudio se presenta esta semana en la revista Nature.


Los relámpagos jovianos y terrestres son similares aunque los de Júpiter aparecen en los polos y en la Tierra son más frecuentes en el ecuador

"No importa en qué planeta estés, los relámpagos actúan como transmisores de ondas de radio cuando cruzan el cielo", señala Shannon Brown, investigadora del Jet Propulsion Laboratory de la NASA y autora principal del trabajo. "Hasta Juno, todas las señales registradas por las naves espaciales anteriores (Voyagers 1 y 2, Galileo, Cassini) se limitaron a detecciones visuales o del rango de kilohercios en el espectro de radio (frecuencias bajas). Se plantearon muchas teorías, pero sin respuesta".

Sin embargo, entre el conjunto de instrumentos altamente sensibles de Juno se encuentra su radiometro de microondas (MWR), que registra las emisiones del gigante gaseoso en un amplio espectro de frecuencias.

"Con los datos de los primeros ocho sobrevuelos, MWR detectó 377 relámpagos –dice Brown– en el rango de megahercios y gigahercios (frecuencias altas), que es lo que puedes encontrar con las emisiones de relampagos terrestres. Creemos que la razón por la que somos los únicos que lo hemos podido observar es porque Juno está volando más cerca de la iluminación que nunca, registrando frecuencias de radio que atraviesan fácilmente la ionosfera de Júpiter".

A pesar de sus similitudes, las observaciones revelan que los relámpagos aparecen en zonas distintas en los dos planetas: "Hay mucha actividad cerca de los polos en Júpiter, pero ninguna cerca del ecuador, como sí ocurre en nuestro planeta. Puedes preguntarle a cualquiera que viva en los trópicos".

Según los autores, hay una explicación: nuestro ecuador está más afectado por los rayos del sol, y el aire cálido y húmedo se eleva más libremente en esa zona por las corrientes de convección, lo que alimenta las imponentes tormentas eléctricas que producen rayos.

Ecuador joviano más estable que los polos

Sin embargo, la órbita de Júpiter está cinco veces más lejos del Sol que la de la Tierra, lo que significa que el planeta gigante recibe 25 veces menos luz solar que el nuestro. En el gigante gaseoso se calienta el ecuador lo suficiente como para crear estabilidad en la atmósfera superior, inhibiendo el aumento del aire caliente que también llega del interior. Pero en los polos, que no tienen ese calor de nivel superior y, por tanto, no tienen estabilidad atmosférica, permiten que los gases cálidos del interior de Júpiter se eleven, impulsando la convección y generando los relámpagos.

"Estos hallazgos podrían ayudar a mejorar nuestra comprensión de la composición, la circulación y los flujos de energía en Júpiter", destaca Brown, quien reconoce que todavía queda una pregunta sin respuesta: "Aunque vemos relámpagos cerca de ambos polos, ¿por qué se registran principalmente en el polo norte?"





Ilustración de los relámpagos en el polo norte de Júpiter. / NASA/JPL-Caltech/SwRI/JunoCam

También relacionado con los destellos luminosos de la atmósfera de Júpiter, esta semana se publica un segundo artículo en Nature Astrónomy, donde la investigadora Ivana Kolmašová de la Academia Checa de Ciencias, junto a otros colegas, presenta la base de datos más grande de emisiones de radio de baja frecuencia (los denominados whistlers) generadas por relámpagos alrededor de Jupiter.

Los investigadores han convertido algunas señales de radio de los relámpagos de Júpiter en frecuencias audibles

Se trata de un conjunto de más de 1.600 señales recopiladas por el instrumento Waves de Juno, una cifra casi diez veces mayor que la obtenida por el Voyager 1. La sonda detectó picos de cuatro relámpagos por segundo, una tasa similar a las observadas en tormentas eléctricas en la Tierra y seis veces mayor que las velocidades máximas captadas con Voyager 1.

Los autores también han convertido algunas señales de radio de los relámpagos en frecuencias audibles, pero según explica Kolmašová a Sinc no hay que confundir estos sonidos con los truenos: “Este es un malentendido básico que surge del hecho de que observamos señales luminosas de relámpagos en frecuencias audibles. Sin embargo, medimos campos eléctricos y magnéticos, que son detectables por antenas y electrónica, no por el oído humano”.

“Para disfrutar de la belleza musical de los whistlers jovianos, uno debe convertir estas medidas en sonido de forma artificial, usando un altavoz o auriculares. Nuestro trabajo, por lo tanto, no muestra ningún trueno en Júpiter, eso es lo que la gente en la Tierra solemos oír después de ver una descarga de relámpagos. Hasta ahora Juno ha detectado relámpagos en radiofrecuencias: Waves a frecuencias audibles y MWR a frecuencias de alrededor de 600 MHz (llamados sferics)”.

Los científicos confían en seguir descubriendo los secretos de los relámpagos y otras características de Júpiter cuando la sonda Juno haga su siguiente sobrevuelo, el número 13, sobre las misteriosas nubes del gigante gaseoso. Será el próximo 16 de julio.

Ondas de radio de los relámpagos de Júpiter:

No son truenos, pero los investigadores han convertido estos espectrogramas de los relámpagos de Júpiter en sonidos audibles (el sonido se repite tres veces en cada ejemplo). / Ivana Kolmašová et al./Nature Astronomy



SINC
El centro de nuestra galaxia constituye un entorno extremo, y no solo por Sagitario A*, el agujero negro supermasivo central, sino también porque la densidad de estrellas en la región central puede alcanzar los diez millones de veces la de la vecindad solar. Un grupo internacional de astrónomos, en el que participa el Instituto de Astrofísica de Andalucía (IAA-CSIC) (España), ha presentado sus resultados sobre un extraño grupo de objetos que parecen hallarse a mitad de camino entre las estrellas y las nubes de gas.


Imágenes del objeto G1 (señalado con la flecha amarilla), que muestran su movimiento en torno al agujero negro supermasivo (marcado con una x). (Foto: IAA)

"Comenzamos este proyecto pensando que si analizábamos cuidadosamente la complicada estructura de gas y polvo cerca del agujero negro supermasivo de la Vía Láctea podríamos detectar algunos cambios sutiles en su forma y la velocidad. Para nuestra sorpresa, detectamos varios objetos que tienen movimientos y características muy distintos, que los ubican en la clase de objetos G, u objetos estelares polvorientos", indica Anna Ciurlo, investigadora de la Universidad de California (UCLA) que encabeza el proyecto.

Estos tres nuevos objetos -denominados G3, G4 y G5-, que se mueven extremadamente rápido y cerca del agujero negro, resultan interesantes porque se parecen a G1 y G2, hallados respectivamente en 2004 y 2012. "Se pensó que G1 y G2 eran nubes de gas hasta que tuvieron su máxima aproximación al agujero negro y, contra todo pronóstico, no fueron destruidos. Por esta razón se  concluyó, en trabajos anteriores, que eran estrellas recubiertas de densas envolturas de gas y polvo", apunta Rainer Schödel, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC) que participa en el proyecto.

Se cree que estos objetos G constituyen estrellas "hinchadas", o estrellas que, debido a las fuerzas de marea del agujero negro, liberan materia de sus atmósferas pero que conservan un núcleo estelar intacto. "La pregunta es, entonces, ¿por qué son tan grandes?", cuestiona Anna Ciurlo (UCLA).

El grupo de investigadores cree que estos objetos G son el resultado de fusiones estelares, donde dos estrellas que giran alrededor de un centro común (conocidas como estrellas binarias) chocan y se fusionan debido a la influencia gravitatoria de Sagitario A*. A raíz de ello, el objeto resultante se hallaría "inflado" durante un largo periodo de tiempo, de hasta un millón de años, antes de establecerse y adquirir el aspecto de una estrella normal.

Los astrónomos seguirán la evolución dinámica de estos objetos, y prestarán especial atención durante su máximo acercamiento al agujero negro supermasivo, que desvelará su naturaleza de manera definitiva. "Este hallazgo muestra que, a pesar de décadas de estudio, el entorno del agujero negro supermasivo del centro de la Vía Láctea puede seguir sorprendiéndonos", concluye Schödel (IAA-CSIC).

Esta investigación es fruto de una colaboración entre Randy Campbell (W. M. Keck Observatory), Anna Ciurlo, Mark Morris y Andrea Ghez (Grupo del Centro Galáctico de la Universidad de California, UCLA) y Rainer Schödel (Instituto de Astrofísica de Andalucía, IAA-CSIC). 


 IAA

Los niveles de metano atmosférico en Marte varían según las estaciones, con máximos a finales del verano en el hemisferio norte y del invierno en el sur, según confirman las mediciones realizadas por el vehículo Curiosity en el cráter Gale durante cinco años. La fuente de este gas, que en la Tierra producen habitualmente los seres vivos, sigue siendo un misterio, aunque se podría estar liberando desde cristales hidratados del subsuelo marciano. El rover también ha encontrado restos de materia orgánica en rocas de hace 3.000 millones de años.



La mayor parte del gas metano que hay en la Tierra tiene un origen biológico, pero se desconoce de dónde procede el detectado en la atmósfera de Marte desde hace casi 20 años. Se han propuesto varias teorías, como su formación por parte de seres vivos (metanogénesis), la degradación de compuestos orgánicos por rayos ultravioleta o interacciones químicas entre el agua y las rocas.

Ahora, un equipo internacional de investigadores liderado desde el Jet Propulsion Laboratory de la NASA y en el que participa el Centro de Astrobiología (CAB, centro mixto CSIC-INTA), presenta por primera vez la detección de un ciclo estacional en las concentraciones de metano marciano.

El estudio, publicado esta semana en Science, se ha realizado durante cinco años con el espectrómetro TLS-SAM (Tunable Laser Spectrometer - Sample Analysis at Mars) a bordo del rover Curiosity de la NASA, que se encuentra en el cráter Gale desde agosto de 2012.

Se presenta por primera vez la detección de un ciclo estacional en las concentraciones del metano marciano, con picos a finales del verano o invierno según el hemisferio

La concentración promedio de metano detectada por TLS-SAM en la atmósfera es muy baja, de alrededor de 0,4 ppb (partes por billón), aunque oscila entre 0,24 y 0,65 ppb. Se ha observado una fuerte y repetida variabilidad estacional, que alcanza niveles mínimos en los solsticios, y máximos a finales del verano en el hemisferio norte y cuando acaba el invierno en el hemisferio sur.

Los modelos actuales no son capaces de explicar a qué se debe esta variabilidad estacional, pero los autores han podido descartar numerosas fuentes potenciales y sugieren que grandes cantidades de metano pueden estar almacenadas en el subsuelo marciano en cristales hidratados llamados clatratos. Los cambios estacionales en la temperatura podrían causar la liberación fluctuante del gas.

Daniel Viúdez, coautor del trabajo e investigador del CAB, explica que una de las más teorías más aceptadas es la emisión de metano por clatratos: “Hace millones de años, grandes cantidades de metano quedarían atrapadas en el subsuelo bajo ciertas condiciones en estos compuestos que, con el cambio a las condiciones presentes de Marte, se habrían vuelto inestables, y estarían liberando lentamente el gas atrapado en el pasado”.

En esta línea, Curiosity seguirá realizando mediciones, que serán complementadas desde órbita por la reciente llegada de la misión Exomars-TGO (Trace Gas Orbiter) de la Agencia Espacial Europea (ESA). Este orbitador tiene la mayor sensibilidad para detectar metano de cualquier instrumento enviado a Marte hasta la fecha, y acaba de posicionarse en su órbita de trabajo, a 400 km sobre la superficie, para comenzar a observar a escala planetaria la presencia, difusión, desaparición de moléculas que están en cantidades muy pequeñas, como el metano. Los científicos confían obtener resultados y descubrir la fuente del metano marciano en los próximos años.

Observaciones sorprendentes de Curiosity

Para María Paz Zorzano, también coautora del trabajo e investigadora del CAB, “las observaciones del Curiosity son extraordinarias y sorprendentes. Después de más de cinco años de operación en la superficie de Marte encontramos pequeñas concentraciones de metano siempre que medimos. Y aún más sorprendente es que su variación anual tenga cierta relación con algunas variables atmosféricas, sugiriendo que existe un proceso físico-químico activo en la actualidad, que no ha sido descrito hasta la fecha”.

Grandes cantidades de metano podrían estar almacenadas en cristales clatratos del subsuelo, liberándose con los cambios de temperatura a lo largo de las estaciones

Con el fin de entender el origen del metano, se ha intentado relacionar las detecciones de TLS-SAM con variables atmosféricas medidas por otro instrumento del rover, el instrumento español REMS, cuyo Investigador Principal es Javier Gómez Elvira, coautor y miembro del CAB.

REMS (Rover Environmental Monitoring Station) es una estación medioambiental desarrollada en el CAB, que lleva midiendo desde el 2012 diferentes variables atmosféricas en el cráter Gale: la velocidad y dirección del viento, la presión atmosférica, la temperatura del aire, la temperatura del suelo, la humedad relativa y el nivel de radiación ultravioleta en la superficie.

Otro coautor e investigador del CAB, Jorge Pla-García, ha contrastado los modelos atmosféricos con los datos. Según indica, “la buena concordancia simulaciones-observaciones nos da la confianza para utilizar el modelo a la hora de investigar, tanto el entorno meteorológico de toda la región del cráter Gale, como la evolución del metano detectado por TLS-SAM”.

Estas correlaciones han permitido acotar la ubicación de la fuente de emisión del metano, pero se necesitará una mayor cantidad de datos para poder entender el origen y la química del metano marciano.

Curiosity también ha encontrado material orgánico en arcillas marcianas de hace 3.000 millones de años

Material orgánico antiguo

En el mismo número de la revista Science aparece otro artículo, coordinado desde el centro de vuelo espacial Goddard de la NASA, donde sus autores informan que han encontrado materiales orgánicos (como tiofeno, metanotiol y dimetilsulfuro) en arcillas marcianas de hace 3.000 millones de años. Estas rocas antiguas recuerdan a las sedimentarias ricas en compuestos orgánicos que se encuentran en la Tierra.

En 2014 Curiosity ya había encontrado materia orgánica en el suelo marciano, y este nuevo estudio lo corrobora, sugiriendo que en el planeta rojo podría haber tenido vida en el pasado. Pero los autores son prudentes: tanto la presencia de materia orgánica como el metano no son necesariamente pruebas de la vida misma. Los dos componentes se pueden producir por procesos no biológicos. En cualquier caso, son una buena señal para las futuras misiones de exploración de la superficie y el subsuelo marcianos.

"Con estos nuevos hallazgos, Marte nos está diciendo que sigamos adelante y buscando evidencias de vida", destaca Thomas Zurbuchen, administrador asociado de la Dirección de Misión Científica de la NASA, que concluye: "Confío en que tanto nuestras misiones actuales como las planeadas llevarán a descubrimientos aún más impresionantes en el planeta rojo".

El ciclo estacional del metano en Marte




Crédito: NASA / JPL-Caltech

Formas en las que el metano del subsuelo marciano podría llegar a la superficie, donde su absorción y liberación podría producir una gran variación estacional en la atmósfera como la observada por Curiosity. Las posibles fuentes podrían ser la metanogénesis, la degradación de los compuestos orgánicos por luz ultravioleta o interacciones químicas entre el agua y las rocas; y sus pérdidas incluyen la fotoquímica atmosférica y reacciones superficiales. Gráfico referido a estaciones del hemisferio norte con datos procedentes del instrumento TLSSAM de Curiosity durante tres años marcianos (casi 5 años terrestres).



SINC

Científicos creen que el choque de dos estrellas de neutrones dejó tras de sí el pozo cósmico más pequeño jamás detectado




En noviembre de 2017, los núcleos extremadamente densos de dos estrellas muertas se fusionaron en una colisión cósmica nunca antes observada por los científicos. El evento fue, de hecho, la primera observación directa del choque de dos estrellas de neutrones, auténticos "cadáveres estelares" que se forman cuando las grandes estrellas envejecidas explotan, dejando tras de sí un núcleo de material (en su mayoría neutrones) ultracompacto.

Durante la colisión, las dos estrellas muertas "fabricaron" y lanzaron al espacio enormes cantidades de oro, plata, platino y otros elementos pesados de la tabla periódica que no se forman, como los más ligeros, en los hornos nucleares de las estrellas. Hasta ese momento, nadie había visto antes uno de los lugares donde se fabrican todos los materiales preciosos del Universo. Los investigadores calcularon que, inmediatamente después de la colisión, se lanzó al espacio una cantidad de oro equivalente a diez veces la masa de la Tierra.

Y ahora, el físico David Pooley, al frente de un equipo de investigadores de la Trinity University en San Antonio, cree que como consecuencia de aquella colisión se formó un agujero negro. Uno, además, que sería el más pequeño de todos los detectados hasta ahora. El trabajo acaba de publicarse en Astrophysical Journal Letters.

Desde el momento de la colisión, los astrónomos se han estado preguntando qué fue de las dos estrellas de neutrones después de su fusión. Sabían que el cuerpo resultante era una especie de "amalgama estelar" con una masa de cerca 2,7 veces la del Sol, pero no sabían si lo que se había formado era, simplemente, una estrella de neutrones más grande, o el agujero negro más pequeño de cuantos han sido descubiertos hasta ahora. La masa del anterior poseedor del récord rondaba las cuatro masas solares.

Para salir de dudas, Pooley y sus colegas analizaron los datos recogidos por el telescopio espacial de rayos X Chandra, de la NASA, varios meses después de que el detector de ondas gravitacionales LIGO identificara la colisión. Si las dos estrellas de neutrones se habían unido para formar una estrella muerta más grande y masiva, los científicos esperaban que la nueva estrella de neutrones estuviera rodeada por una brillante capa de partículas de alta energía, algo similar a lo que se puede ver al observar la Nebulosa del Cangrejo, pero mucho más brillante.

Pero los rayos X procedentes del lugar de la fusión resultaron ser demasiado débiles para coincidir con esa explicación, lo que llevó al equipo a concluir que la colisión, efectivamente, había dado lugar a un agujero negro.

Nuevas observaciones del brillo de los rayos X del objeto formado tras la fusión ayudarán a confirmar o desmentir definitivamente la existencia de ese nuevo agujero negro, el primero a cuyo nacimiento ha podido asistir el hombre.



ABC
El Instituto de Astrofísica de Canarias (IAC) y la Universidad de Oviedo presentan hoy el descubrimiento de dos nuevos sistemas planetarios, uno de los cuales alberga tres planetas del tamaño de la Tierra.




La información acerca de estos nuevos exoplanetas se ha obtenido a partir de los datos recogidos por la misión K2 del satélite Kepler, de la NASA, que inició su programa en noviembre de 2013. El trabajo, que se publicará en la revista Monthly Notices of the Royal Astronomical Society (MNRAS), revela la existencia de dos nuevos sistemas planetarios mediante la detección de los eclipses que producen en la luz que recibimos de sus respectivas estrellas. En el equipo de investigación liderado conjuntamente por Javier de Cos, de la Universidad de Oviedo, y Rafael Rebolo, del IAC, participan, junto a investigadores de estos dos centros, otros de la Universidad de Ginebra y del Gran Telescopio Canarias.

El primer sistema exoplanetario se encuentra en la estrella K2-239, caracterizada por estos investigadores como una enana roja de tipo M3V a partir de observaciones realizadas con el Gran Telescopio Canarias, en el Observatorio del Roque de los Muchachos (La Palma, Garafía). Está situada en la constelación del Sextante a 50 parsecs del Sol (unos 160 años luz). Alberga un sistema compacto de al menos tres planetas rocosos de tamaño similar a la Tierra (1.1, 1.0 y 1.1 radios terrestres) que orbitan la estrella cada 5.2, 7.8 y 10.1 días, respectivamente.

La otra estrella enana roja denominada K2-240 posee dos planetas de tipo súper-Tierra de aproximadamente el doble del tamaño de nuestro planeta. A pesar de que la temperatura atmosférica de las estrellas enanas rojas, en torno a las que giran estos planetas, es de 3.450 y 3.800 K respectivamente, casi la mitad de la temperatura de nuestro Sol, los investigadores estiman que todos los planetas descubiertos tendrán temperaturas superficiales decenas de grados más elevadas que las del planeta Tierra debido a la fuerte radiación que reciben en órbitas tan cercanas a sus estrellas.

Futuras campañas de observación con el nuevo telescopio espacial James Webb permitirán caracterizar la composición de las atmósferas de los planetas descubiertos. Observaciones espectroscópicas con el instrumento ESPRESSO, instalado en el Very Large Telescope (VLT), del Observatorio Europeo Austral (ESO), o bien con futuros espectrógrafos en el GTC o en nuevas instalaciones astronómicas, como el ELT o el TMT, serán clave para determinar las masas, densidades y propiedades físicas de estos planetas.

El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (Garafía, La Palma) forma parte de la red de Infraestructuras Científicas y Técnicas Singulares (ICTS) de España.

  • Artículo: Díez Alonso, J.I. et al. "Two planetary systems with transiting Earth-size and super-Earth planets orbiting late-type dwarf stars", Monthly Notices of the Royal Astronomical Society (en prensa)



IAC

Sol

Sol

Feature

Cat-5

Cat-5

Po qué...

Anecdotas de Newton

Einstein