¿Qué conmemoramos exactamente este 25 de noviembre de 2015?
Se cumplen justo 100 años del día en que Albert Einstein explicó en una conferencia ante la Academia Prusiana de Ciencias, en Berlín, las ecuaciones definitivas de su teoría general de la relatividad. Tras casi una década de tortuosos intentos de compatibilizar la fuerza gravitatoria con su teoría especial de la relatividad (1905), y con el matemático David Hilbert pisándole los talones, por fin dio forma precisa y definitiva a la que se considera una de las cimas intelectuales de la humanidad. Su presentación se publicó aquel mismo día, 25 de noviembre de 1915, en las actas (Proceedings o Sitzungsberichte) de la academia.
¿Einstein creyó en los agujeros negros?
La predicción de la existencia de los agujeros negros que implicaba la teoría fue tan radical –aún más que la expansión del universo– que ni siquiera Einstein fue capaz de entenderla. Fue uno de sus principales errores. Solo se aceptó después, tras un largo y arduo proceso completado en los años 60, dando así un magnífico ejemplo de que las mejores teorías de la física son a menudo ‘más listas’ que sus propios creadores. Hoy en día sabemos que los agujeros negros son reales. Recientemente en la película Interstellar hemos podido ver una de las mejores representaciones de lo que las ecuaciones de Einstein pueden llegar a contener.
¿Por qué los agujeros negros también ‘enfrentan’ a la relatividad y la física cuántica?
Imagina que se te cae tu móvil o tableta a un agujero negro. ¿Hay alguna posibilidad, por muy remota que sea, de que recuperemos la información que había en ellos? La teoría de Einstein nos dice que no: cuando algo ha cruzado el horizonte del agujero negro, ya no es posible recibir ninguna señal suya. Sin embargo, la mecánica cuántica nos dice que la información nunca se puede perder: se puede embrollar muchísimo (como sucede si quemamos la tableta), pero en principio siempre ha de ser posible extraerla de nuevo. Esta contradicción entre ambas teorías se conoce como la paradoja de la pérdida de información en los agujeros negros. Esperamos que los esfuerzos en intentar resolver esta cuestión nos ayuden a entender cómo unificar ambas teorías.
¿Tiene alguna aplicación práctica la relatividad general?Si todavía alguien no está suficientemente impresionado por la nueva visión del mundo que la teoría de Einstein proporciona, y pide una utilidad práctica, basta con que se deje guiar por un navegador GPS. Si este no tuviese en cuenta el efecto, pequeñísimo pero medible, que la curvatura del espacio-tiempo tiene sobre la señal que el aparato recibe de los satélites, nuestros coches acabarían en pocos minutos en la carretera equivocada. Así que la próxima vez que su navegador le diga “ha llegado a su destino” y no se encuentre en el fondo de un barranco o empotrado contra un muro, piense por un instante que eso de la curvatura del espacio-tiempo debe de tener algo de cierto. Agradezca a Einstein los años de intenso trabajo que dedicó a entenderlo, y celebre su culminación en una teoría tan magnífica.
La predicción de la existencia de los agujeros negros que implicaba la teoría fue tan radical –aún más que la expansión del universo– que ni siquiera Einstein fue capaz de entenderla. Fue uno de sus principales errores. Solo se aceptó después, tras un largo y arduo proceso completado en los años 60, dando así un magnífico ejemplo de que las mejores teorías de la física son a menudo ‘más listas’ que sus propios creadores. Hoy en día sabemos que los agujeros negros son reales. Recientemente en la película Interstellar hemos podido ver una de las mejores representaciones de lo que las ecuaciones de Einstein pueden llegar a contener.
¿Por qué los agujeros negros también ‘enfrentan’ a la relatividad y la física cuántica?
“La próxima vez que su navegador GPS le diga que ha llegado a su destino, agradezca a Einstein sus años de intenso trabajo”
Imagina que se te cae tu móvil o tableta a un agujero negro. ¿Hay alguna posibilidad, por muy remota que sea, de que recuperemos la información que había en ellos? La teoría de Einstein nos dice que no: cuando algo ha cruzado el horizonte del agujero negro, ya no es posible recibir ninguna señal suya. Sin embargo, la mecánica cuántica nos dice que la información nunca se puede perder: se puede embrollar muchísimo (como sucede si quemamos la tableta), pero en principio siempre ha de ser posible extraerla de nuevo. Esta contradicción entre ambas teorías se conoce como la paradoja de la pérdida de información en los agujeros negros. Esperamos que los esfuerzos en intentar resolver esta cuestión nos ayuden a entender cómo unificar ambas teorías.
¿Tiene alguna aplicación práctica la relatividad general?Si todavía alguien no está suficientemente impresionado por la nueva visión del mundo que la teoría de Einstein proporciona, y pide una utilidad práctica, basta con que se deje guiar por un navegador GPS. Si este no tuviese en cuenta el efecto, pequeñísimo pero medible, que la curvatura del espacio-tiempo tiene sobre la señal que el aparato recibe de los satélites, nuestros coches acabarían en pocos minutos en la carretera equivocada. Así que la próxima vez que su navegador le diga “ha llegado a su destino” y no se encuentre en el fondo de un barranco o empotrado contra un muro, piense por un instante que eso de la curvatura del espacio-tiempo debe de tener algo de cierto. Agradezca a Einstein los años de intenso trabajo que dedicó a entenderlo, y celebre su culminación en una teoría tan magnífica.
SINC



Un cordial saludo. Con respecto al postulado de la Relatividad General referido a "la localidad (restricción espacial) del Principio de Equivalencia", quisiera poner a consideración profesional un resultado, confirmado por más de cuatro programas de inteligencia artificial consultados, en cuanto a que en base a la Dilatación Temporal Gravitacional y el Efecto Shapiro se deduce que "en un sistema de referencia inercial no existe restricción espacial para la aplicación de tal principio porque las llamadas Fuerzas de Marea son anuladas" (!?) En caso de resultar de interés hacérmelo saber para enviarle los textos descriptivos. diazreyesjosealberto62@gmail.com
ResponderEliminar