Cat-1

Cat-2

Cat-2

Cat-1

Cat-1

Cat-2

Cat-2

Asteroides

Cometas

» » » » » » La búsqueda de las axiones como candidatos a materia oscura



Sabemos que la materia oscura existe, pero no sabemos lo que es. La búsqueda de partículas WIMP no ha tenido éxito en las últimas décadas. Un candidato alternativo son los axiones, unas partículas superligeras predichas por la cromodinámica cuántica. Los axiones son una predicción teórica del modelo estándar y permiten explicar la materia oscura fría sin necesidad de física más allá del modelo estándar. El año pasado se inició el experimento de búsqueda de los axiones llamado ADMX (Axion Dark Matter Experiment) en el Centro de Física Nuclear Experimental y Astrofísica de la Universidad de Washington. La colaboración ADMX nació en 1996 en el Laboratorio Nacional Lawrence Livermore en California, pero en 2010 se mudó de Livermore a Washington, junto con su director Leslie Rosenberg (el experimento es un cilindro de 4 metros de longitud fácilmente transportable por carretera). Se espera que en los próximos años el experimento ADMX descubra o descarte de forma definitiva la existencia de los axiones. Nos lo cuenta Adrian Cho, “Dark Matter’s Dark Horse,” Science 342: 552-555, 1 Nov 2013.



El axión es una partícula escalar (espín cero), neutra (carga cero), muy ligera (unos 10−5 eV), prácticamente estable y que interacciona muy débilmente con el resto del modelo estándar. Además, los axiones podrían haber sido producidos copiosamente en el big bang y tras una breve fase en equilibrio térmico, habrían formado un condensado de Bose-Einstein que hoy debe permear todo el universo. Por ello, el axión es un candidato ideal a materia oscura fría.

El origen de los axiones en el modelo estándar está asociado a la simetría CP (carga-paridad), es decir, el cambio de todas las partículas por sus antipartículas y su reflexión especular (el cambio de signo simultáneo de los vectores de sus posiciones y velocidades). Si la cromodinámica cuántica (QCD), la teoría de la interacción fuerte que explica cómo se unen los quarks dentro del protón gracias a los gluones, viola la simetría CP entonces el neutrón debe tener un momento dipolar eléctrico, además de momento dipolar magnético. El momento dipolar eléctrico implica que el neutrón tiene más carga positiva en la dirección de uno de sus polos magnéticos y más carga negativa en la dirección del otro polo. Sin embargo, los experimentos de muy alta precisión indican que el neutrón no tiene momento dipolar eléctrico. Por tanto, la QCD debe preservar la simetría CP.

Esto es un grave problema, porque la simetría CP permite ciertas interacciones entre los gluones (recuerda que los gluones son como dipolos para la carga de color y podemos decir que tiene “dos colores”). Esta interacción está determinada por un ángulo llamado Θ que puede ser distinto de cero, pero su valor experimental es muy cercano a cero (menor de 0,000 000 000 1). ¿Por qué hay un ajuste tan fino de este valor? Este problema de fine-tuning se llama “problema CP fuerte” y desde 1977 tiene una solución sencilla propuesta por Roberto Peccei y Helen Quinn. Debe existir un campo cuántico similar al campo eléctrico que interaccione con los gluones de tal manera que cancele las violaciones de la simetría CP y genere de forma dinámica el valor de Θ. Las partículas del nuevo campo cuántico son los axiones. El mecanismo de Peccei-Quinn es una solución elegante a un grave problema del modelo estándar e, igual que el mecanismo de Higgs, predice la existencia de una nueva partícula que aún no ha sido descubierta (de hecho, a nivel clásico los axiones son bosones de Goldstone (partículas sin masa), pero adquieren masa a nivel cuántico por efectos no perturbativos, por ello se les llama bosones pseudo-Goldstone).

Los axiones permiten explicar la materia oscura fácilmente. Tras el big bang, los valores de Θ eran diferentes en cada región del universo. Conforme el universo se expandió y se enfrió, los valores de Θ disminuyeron hasta casi cero. En este proceso se produjeron excitaciones el campo y se generaron los axiones primordiales que todavía estarán distribuidos por el universo. La materia oscura fría sería el resultado de la distribución actual de los axiones.

Las medidas cosmológicas indican que la masa del axión debe ser mayor de 1 µeV (microelectrónvoltio), unos 2 billones de veces más pequeña que la masa del electrón, para evitar que haya demasiada materia oscura que impida que el universo tenga la edad que tiene. Por otro lado, las medidas astrofísicas indican que la masa de los axiones no puede superar los 1000 µeV, porque afectarían a las reacciones nucleares en las estrellas y violarían lo que ya sabemos sobre las explosiones de tipo supernova. Por cierto, los axiones con una masa unas diez mil veces más pequeña que la de los neutrinos son candidatos a la materia oscura fría, cuando los neutrinos son candidatos a la materia oscura caliente, porque son bosones y se encuentran en un estado condensado de Bose-Einstein.

El modelo estándar predijo el Higgs y ha sido encontrado (aunque algunos físicos dudaron hasta el último momento sobre su existencia). El modelo estándar predice el axión que aún no ha sido encontrado (aunque algunos físicos creen que esta predicción es menos firme que la de Brout, Englert y Higgs). Aún así, la mayoría de los expertos en cromodinámica cuántica está bastante convencidos de que el axión debe existir (encontrarlo le daría el premio Nobel a Peccei y Quinn, confirmando el modelo estándar hasta extremos que pocos quieren soñar).


La propiedad más importante del axión es que tiene un acoplo no nulo con el fotón, lo que significa que en el seno de un campo magnético, el axión peude convertirse en un fotón y viceversa, el fotón en axión. Donde haya gran densiadd de fotones y intensos campos magnéticos, como el interior del Sol, podría haber axiones. ¿Por qué el axión es materia oscura si se acopla con el fotón? Porque el acoplo es extremadamente pequeño.

El experimento ADMX funciona como una radio en onda AM donde se trata sintonizar la cadena de radio adecuada, eso sí, con una sensibilidad increíble, siendo capaza de detectar una señal con una potencia de unas pocas milésimas de billonésima de billonésima de vatio (algo así como si estuvieras en Marte y tu teléfono móvil pudiera conectarse a una antena convencional en la Tierra).

Cuando un axión pasa por el campo del imán de ADMX, a veces, debe transformarse en un fotón, que emitirá ondas de radio de baja energía que serán detectadas por el experimento. Por supuesto, la interacción entre el axión y el fotón es tan débil que se requiere un campo magnético muy intenso (ADMX emplea un imán superconductor de 6 toneladas de un metro de longitud y medio metro de anchura que produce un campo magnético 152.000 veces más fuerte que el de la Tierra). Aún así, la interacción es entre el axión y el fotón es tan débil que es amplificada en un factor de 100.000 mediante una cavidad de resonancia adecuada.

El mayor problema es criogénico. Este año ADMX será equipado con un sistema de refrigeración por helio líquido capaz de enfriar el experimento a 0,3 K. El próximo año será equipado con un sistema capaz de alcanzar 0,1 K. Si todo va bien, en los próximos 3 años se buscarán axiones en ADMX con masas entre 10 y 100 µeV (los axiones con masa entre 100 y 1000 µeV están fuera del alcance de ADMX).


Hay otros experimentos en curso, como CAST (CERN Axion Solar Telescope) que busca axiones en el Sol. CAST es un dipolo recto de 10 metros de largo capaz de producir un campo magnético de 9 tesla en el interior de sus dos tubos de unos 5 cm de diámetro cada uno. Estos grandes y potentes imanes superconductores están enfriados a 1,8 K. CAST está colocado sobre una plataforma giratoria que permite que el imán esté siempre orientado en la dirección del Sol y pueda seguir su movimiento (durante al menos 3 horas al día). Sin embargo, su resolución en cuanto a la masa de los axiones se limita a la escala de los eV; en 2012 se descartaron los axiones con una masa superior a 0,4 eV y el próximo año se espera rebajar esta cifra a unos 0,02 eV, valores todavía muy por encima de las estimaciones astrofísicas.
 
 
 
 
 

Francis (th)E mule Science's News 
«
Next
Entrada más reciente
»
Anterior
Entrada antigua

About the Author DTR

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.

No hay comentarios

Leave a Reply

Sol

Sol

Feature

Cat-5

Cat-5

Po qué...

Anecdotas de Newton

Einstein